
SELF-LEARNED VIDEO SUPER-RESOLUTION WITH AUGMENTED SPATIAL AND
TEMPORAL CONTEXT

Zejia Fan†, Jiaying Liu†, Wenhan Yang†, Wei Xiang‡, Zongming Guo†?

†Wangxuan Institute of Computer Technology, Peking University, Beijing, China
‡Bigo, Beijing, China

ABSTRACT
Video super-resolution methods typically rely on paired
training data, in which the low-resolution frames are usu-
ally synthetically generated under predetermined degradation
conditions (e.g., Bicubic downsampling). However, in real
applications, it is labor-consuming and expensive to obtain
this kind of training data, which limits the practical perfor-
mance of these methods. To address the issue and get rid of
the synthetic paired data, in this paper, we make exploration
in utilizing the internal self-similarity redundancy within
the video to build a Self-Learned Video Super-Resolution
(SLVSR) method, which only needs to be trained on the input
testing video itself. We employ a series of data augmenta-
tion strategies to make full use of the spatial and temporal
context of the target video clips. The idea is applied to two
branches of mainstream SR methods: frame fusion and frame
recurrence methods. Since the former takes advantage of
the short-term temporal consistency and the latter of the long-
term one, our method can satisfy different practical situations.
The experimental results show the superiority of our proposed
method, especially in addressing the video super-resolution
problems in real applications.

Index Terms— Video Super-Resolution, Self-Learning,
Augmentation, Spatial Context, Temporal Context

1. INTRODUCTION

Super-Resolution (SR) aims at turning Low-Resolution (LR)
frames/images into the corresponding High-Resolution (HR)
ones. Since video transmission is widely applied, there is a
growing demand for video quality improvement, especially
for Video Super-Resolution (VSR). Comparing with single-
image SR [1–5] that only utilizes the spatial dependency, VSR
models [6–12] can additionally utilize temporal dependency
among frames, which derive more promising results. Based
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on the way to process each input frame, the VSR methods can
be categorized into two classes: frame fusion and frame recur-
rence. The frame fusion VSR models take several consecutive
frames as input and work in a many-to-one way. Usually, the
motion between adjacent frames and the central frame is first
estimated, followed by motion compensation to align the ad-
jacent frames to the central frame. Then, VSR models carry
out SR reconstruction to predict the central frame with these
aligned frames. In comparison, the frame recurrence model
builds an one-to-one sequence-to-sequence mapping which
transforms the current input frame into the HR prediction pro-
gressively with support of information aggregated from the
previous sequence process. This category is capable to main-
tain long-term memory information of the whole sequence for
better effectiveness and efficiency.

Most VSR models are trained with full supervision, i.e.,
large amounts of paired LR-HR data. This might come
across the domain gap issue when applied to real scenarios.
Since a large paired LR-HR dataset in real scenes is diffi-
cult to collect, supervised VSR models usually use synthetic
down-sampled ideal data, which is generated by Bicubic
down-scaling kernel with anti-aliasing. However, shooting
conditions in real scenes might vary, e.g., camera shaking,
equipment parameters, and air conditions, which leads to
a domain gap between the synthetic and real as shown in
Fig. 1(b).

To address these issues, recently more efforts are put into
the direction of unsupervised/self-supervised SR. Some [13,
14] carry out unsupervised learning on unpaired LR-HR
datasets while others [15,16] propose to train on the input LR
image and exploit the image-specific information. However,
fewer works focus on the self-supervised VSR problem.

In this paper, we propose a Self-Learned Video Super-
Resolution (SLVSR) framework, which takes a single input
video sequence for model training and is plug-and-play for
most of the VSR deep neural networks. The framework does
not rely on the training phase on external datasets and can be
implemented with modest computation resources. The main
idea is shown in Fig. 1(a). The proposed SLVSR generates
training pairs from the single video input according to the
patch recurrence in natural images and videos. Benefiting
from the diversified data augmentation, our network can learn
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to perform high-quality super-resolution reconstruction with
limited training data by exploiting both spatial and tempo-
ral context. Experiments show that SLVSR framework pro-
duces desirable results on the blind blur kernel case and the
real-world video case with both high-quality details and well-
preserved temporal-domain continuity.

2. SELF-LEARNED VIDEO SUPER-RESOLUTION

2.1. Motivation

In [17, 18], it is commonly observed that, the small patches
are recurring across scales within a single natural image.
Namely, the visual entropy inside a single image is much
smaller than in a general external collection of images. This
discovery provides the theoretical support, the possibility and
the potential superiority to implement the self-supervised im-
age/video super-resolution. The natural images/videos them-
selves contain abundant information. Since the recurrence
happens across different scales, using the target natural im-
age alone can produce enough reference patches to support
SISR, which has been demonstrated in [15].

2.2. Framework

Based on the above consideration, we introduce the proposed
Self-Learned Video Super-Resolution (SLVSR) framework.
Fig. 1(a) demonstrates the our main idea. Given a low-
resolution frame sequence S = {L1, · · · , Ln}, where n is
the number of frames, and Sk = {L1

k, · · · , Ln
k} represents the

sequence up-sampled from S with a scale factor of k. With
an input LR sequence S, SLVSR first generates the training
examples from the testing frame itself by down-scaling each
frame in the LR sequence S to get S1/k = {L1

1/k, · · · , L
n
1/k}.

Each frame in S can be coupled with the corresponding frame
in S1/k to generate the training examples.

When we perform SR on the frame Lt, we first find a sim-
ilar patch pair P and Q in Lt and Lt

1/k, respectively. Then,
the internal spatial and temporal redundancies can be used to
obtain useful clues for SR:

• Cross-Scale Spatial Redundancy: Let P ′ be the par-
ent patch of P in Lt

k, Q′ be the parent patch of Q in
Lt, the LR-HR correlation between Q and Q′ can offer
useful guidance for the reconstruction of P ′ from P ,
which can be learned by our model.

• Temporal Redundancy: The neighboring frames of
Lt can be aligned to Lt, and the patches relative to Q
and Q′ in these neighboring frames can form the con-
straints on the HR result.

2.3. Spatial and Temporal Context Utilization

In the self-supervised learning process, the training samples
come from the input videos and the down-sampling versions
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(a) Self-Learned Video Super-Resolution (SLVSR). Sampled images are
down-sampled from Input LR images. The definition of the marks is shown
in Sec. 2.2.

Supervised VSR
26.41/0.7147

SLVSR
23.97/0.5910

Unknown
Blind Kernel

Input
(PSNR/SSIM) 26.41/0.714723.97/0.5910Blur

(b) Performance when the blind kernel is unknown.

Fig. 1. An overview of the work. (a) The key idea of the pro-
posed self-learned video super-resolution. With an input LR
video, SLVSR generates training examples from the testing
input frame itself. (b) Supervised methods obtain unsatisfac-
tory performance when the blur kernel is unknown, while our
method can well handle the case with zero-shot learning.

of them along both the spatial and temporal dimensions. If
the scale factor is k, in the training process, the scale propor-
tion among the input, output, and the final target is 1 : k : k2.
Compared with the original input, the motion amplitude of
the objects in the down-sampled input video is reduced by
k. Sampling videos with a larger temporal dilation leads to
a motion amplitude more similar to that in the objects of the
original LR video frames, which is more beneficial to model
the motion of the input frames and the related frame align-
ment. Intuitively, the fast movement of an object becomes
slower after the down-sampling in the spatial domain and can
provide more useful guidance on modeling the normal object
motion with similar structures in the input LR frames.

As for temporal context augmentation, we mainly apply a
video sampling strategy, including sampling with dilated in-
terval among {1, · · · , k} and sampling inversely in the time
domain. There are two classes of deep VSR models distin-
guished by how temporal information is used:

• Frame Fusion. Frame fusion methods work in a many-
to-one fashion, mapping successive LR frames into one
SR output frame. In order to exploit the temporal
context, we sample frame batches with different di-
lation factors. Consider Lk as a center frame from
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input sequence, {Lt−2i, Lt−i, Lt, Lt+i, Lt+2i} as a
common five-frame batch with a dilation factor of i,
i ∈ {1, · · · , k} ∪ {−k, · · · ,−1}. The downsampled
batch and the center frame Lk will be added to the
training dataset. From batches with different dilation
factors, the VSR network can acquire more diverse
information about motion modeling and LR-HR map-
ping.

• Frame Recurrence. Frame recurrence methods per-
form SR in a one-to-one sequence-to-sequence fash-
ion to generate the SR result with the current LR im-
age and the information of existing SR frames. We
also sample the frames with different temporal dila-
tion factors from the input sequence. Given input se-
quence {L1, L2, · · · , Lt−1, Lt}, we first add sequences
like {Li, L2i, · · · , Lt−i, Lt}, i ∈ {1, · · · , k} and the
versions in the inverse order into the training dataset as
the HR sequence and then generate training sequence
pairs from the augmented dataset.

2.4. Network Architecture

Our SLVSR framework can be applied to most VSR meth-
ods and brings improvement in performance. In our paper,
we by default adopt VESPCN [19], a light-weighted frame
fusion SR method, as the VSR model baseline. It estimates
the displacement among neighboring frames and the cen-
ter frame, then aligns these neighboring frames with a fast
multi-resolution spatial transformer network based on CNN.
Several adjacent frames after alignment are stacked together
as low-resolution 3D data and 3D convolutions are used
to perform the SR reconstruction. Similar procedures are
performed when applying SLVSR to the frame recurrence
method, such as FRVSR [9].

2.5. Training Data Generation

We generate k times down-sampled sequence S1/k from S.
As pointed out in Sec. 1, the conventionally set ideal down-
sampling method brings in distortions in real scenarios. To
address this problem, we generalize the single-image SR
method KernelGAN [20] to the video input case. KernelGAN
estimates the down-sampling kernel through internal learn-
ing. More specifically, the method trains a generator, which
maps HR input to LR space as blur kernel, and a discrimina-
tor to judge whether a patch comes from a generator or the
original image. In this way, Generative Adversarial Network
(GAN) estimates a blur kernel that accurately generates the
LR space similar to the input image patch distribution. As
for the single video input, we treat all patches in the video
constitute the input patch space and randomly sample frames
in the spatial and temporal domain for both generator and dis-
criminator. The trained blur kernel is shared among the video
frames. In this way, we enrich the training data with more
diverse blur kernels while improving computation efficiency.

Table 1. Quantitative comparison on Vid4 for 2× SR. Red
and blue indicate the best and the second best performance,
respectively. Evaluation carries out on the Y (luminance)
channel with PSNR/SSIM metrics.

Method
RCAN

(1 Frame)
DUF

(7 Frames)
ZSSR

(1 Frame)
Calendar 21.46/0.6787 20.08/0.6139 21.54/0.6808

City 25.41/0.6293 23.84/0.5784 25.24/0.6261
Foliage 24.13/0.6453 22.54/0.5697 24.11/0.6431
Walk 25.32/0.7794 23.65/0.7527 25.31/0.7855

Average 24.08/0.6832 22.53/0.6287 24.05/0.6839

Method
KernelGAN
(1 Frame)

SinGAN
(1 Frame)

SLVSR
(3 Frames)

Calendar 22.17/0.7705 20.71/0.6118 25.10/0.8431
City 26.07/0.7026 24.74/0.5744 26.93/0.7459

Foliage 25.76/0.7835 24.15/0.6021 28.66/0.8651
Walk 26.96/0.8433 24.43/0.7465 27.86/0.8574

Average 25.24/0.7750 23.45/0.6337 27.14/0.8279

2.6. Implementation Details

As for data augmentation, we applies four rotations (0◦, 90◦,
180◦, 270◦), reflection and affine transformation to expand
the dataset. As for the training process, we use L1 loss and
ADAM [21] optimizer. The initial learning rate is set to 2 ∗
10−4. We periodically take a linear fit of the reconstruction
error of generated training examples to adjust the learning
rate. If the standard deviation is greater by a factor than the
slope of the linear fit and the absolute value of the slope is rel-
atively small, we divide the learning rate by 10. The training
process ends with a learning rate smaller than 10−8.

3. EXPERIMENTS

Experimental Setup. We test on Vid4 [22], which is widely
used as a standard benchmark for VSR, and contains four se-
quences: city, calendar, walk and foliage. Although the per-
formance on this test set is commonly reported in the litera-
ture, the motion between frames is relatively small and sim-
ple in these video sequences. To make up for this deficiency,
we randomly pick out 20 video sequences from the Vimeo-
90k [23] and name it the Vimeo-20. All the video clips are
downloaded from the website vimeo.com and each is a 7-
frame sequence, with a fixed resolution of 448 × 256. The
data is also used as the low-resolution real-world clips. The
compared methods include RCAN [24], DUF [6], ZSSR [15],
and KernelGAN [20]. More experimental results are provided
online1.
Blind Blur Kernel Case. We adopt an-isotropic Gaussian
kernels to generate LR frames for evaluation. We randomly
sample the blur kernel for each video clip to generate the LR
video frames from the HR ones and then measure the perfor-
mance of each method with quantitative metrics. We show
the quantitative comparison with Table 1. It is observed that
our SLVSR achieves considerably better results than other

1https://zahrafan.github.io/icassp22 SLVSR/
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(a) Evaluation on videos generated by blind blur kernel.

LR input KernelGANRCAN DUF SinGANZSSR SLVSR

LR input KernelGANRCAN DUF SinGANZSSR SLVSR Ground Truth

(b) Evaluation on the real-world video.

Fig. 2. Visualization comparison among different methods.

ZSSR SLVSR
+VESPCN

TI
M
E

Fig. 3. Temporal domain continuity. We evaluate the per-
formance in three continuous frames. SLVSR is evidently af-
fected less by aliasing.

methods, with at least 0.9dB PSNR gains. The qualitative re-
sults are demonstrated in Fig. 2(a). From the results, we can
observe that, most methods fail to restore the clear results,
e.g. RCAN, ZSSR. KernelGAN generates obvious visual ar-
tifacts. Comparatively, SLVSR provides clear visual results
with fewer artifacts.

Real-World Videos. Our efforts on the VSR task ultimately
aim at applying this technology to real-world videos. There-
fore, the performance of the model on real-world low-quality
input is very worthy of our attention. Fig. 2(b) shows that
our SLVSR can produce satisfactory results on real videos.
Compared with ZSSR, SLVSR is able to reconstruct clearer
boundaries.

Temporal Domain Continuity. As shown in Fig. 3, when
looking continuously along with the temporal domain, SLVSR
produces results with better continuity. Moreover, our results
have more distinct edges, and the edges of different objects
do not tend to mix together.

Table 2. Ablation study on temporal augmentation. The
performance is measured by the PSNR and SSIM on Vid4
testing set on Y (luminance) channel.

Method Temporal Aug. PSNR/SSIM

SLVSR+VESPCN 32.13/0.9370
SLVSR+VESPCN X 32.25/0.9409
SLVSR+FRVSR 30.91/0.9199
SLVSR+FRVSR X 30.99/0.9216

Ablation Study on Data Augmentation. To explore the ef-
fect of data augmentation, we perform ablation studies. The
results can be seen in Table 2. We use SLVSR+VESPCN to
represent the frame fusion method and SLVSR+FRVSR for
frame recurrence method. With the temporal data augmenta-
tion, SLVSR+VESPCN obtains a 0.15dB gain in PSNR and
SLVSR+FRVSR obtains a 0.08dB gain in PSNR. These re-
sults show the effectiveness of temporal data augmentation.

4. CONCLUSION

In this work, we propose a plug-and-play self-learned video
super-resolution framework, which exploits the temporal and
spatial context of the input video sequence, relying on nei-
ther external examples nor prior training. The framework can
be widely used on a variety of VSR networks. Experimental
results demonstrate the superior performance and the gener-
alization of our designs. Considering the rich information in
the external data, it will be our future work to explore a way
to properly combine the advantage of self-learning and super-
vised learning on external datasets.
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